Heat Pipes

Heat Pipes圖片
Heat Pipes

Introduction of Micro Heat Pipe

As shown in the diagram of heat transfer principle of heat pipe, one end of the heat pipe is evaporation zone (heat in) and the other end is condensation zone (heat out). When the evaporation zone is heated, liquid working-fluid in capillary wick is vaporized, the vapor flows  to  the  condensation  zone  driven  by  the  pressure  difference between the hot evaporation zone and the cold condensation zone and then condensates in the condensation zone. The working-fluid, which is transformed into liquid, flows from the condensation zone to the evaporation zone along the capillary structure driven by the capillary pressure. In a cycle like this, heat is transferred from one end to the other of the heat pipes.

Different applied environment and working conditions requires different micro heat pipe with a different structure and heat transfer performance. The heat transfer performance of micro heat pipes relies heavily on the capillary wick structure in the inner surface, so design and manufacturing technology of the wick structure is the key and critical factor in the production process of the micro heat pipe at all time.

According to different wick structure, micro heat pipe includes three types: grooved heat pipe, sintered heat pipe and composite heat pipe.

微型熱管介紹
如同熱管的熱傳遞原理圖所示,熱管的一端為蒸發區(吸收熱量),另一端為冷凝區(釋放熱量)。當蒸發區受到加熱時,毛細結構中的液態工質被汽化,蒸汽在蒸發區與冷凝區之間的壓差驅動下流向冷凝區,並在冷凝區冷凝為液態。液態工質則沿著毛細結構在毛細壓力的作用下,從冷凝區流回蒸發區。如此循環運作,熱量便從熱管的一端傳遞至另一端。
不同的應用環境和工作條件需要不同結構與熱傳性能的微型熱管。而微型熱管的熱傳性能在很大程度上依賴於內壁毛細結構的設計。因此,毛細結構的設計與製造技術始終是微型熱管生產過程中的關鍵因素。
根據毛細結構的不同,微型熱管可以分為三種類型:槽式熱管、燒結式熱管和複合式熱管。

 


Micro heat pipe structure and working principle

Heat Pipe Products

• Heat Pipe Display
• Straight Heat Pipe
• Flat Heat Pipe
• Special-Shaped Heat Pipe

Heat Pipe Type

Diameter (mm):      1,2,3,4, 5,6,8,10,9.5,12,12.7,16,22
Length(mm):      60~1000

Diameter(D) Standard Length(L) Ineffective Length(A) Ineffective Length( B)
1±0.05mm 60~300±1mm 1~3.0mm 1~6.0mm、<8mm
2±0.05mm 60~300±1mm 1~3.0mm 1~6.0mm、<8mm
3±0.05mm 60~300±1mm 2~5.0mm 4~7.0mm、< 10mm
4±0.05mm 60~300±1mm 2~5.0mm 4~7.0mm、< 10mm
5±0.05mm 60~300±1mm 2~5.0mm 4~7.0mm、< 10mm
6±0.05mm 60~2000±1mm 2~5.0mm <10mm
8±0.05mm 60~2000±1mm 3~5.0mm <10mm
9.5±0.05mm 60~600±1mm <5mm <14mm
10±0.05mm 60~600±1mm <5mm <14mm
12±0.05mm 60~600±1mm <5mm <15mm
12.7±0.05mm 60~600±1mm <8mm <15mm
16±0.05mm 60~600±1mm <8mm <15mm
22±0.05mm 60~600±1mm <8mm <15mm

 Bending Suggestion

 

R and Angle
Type Min. R Suggestion Min.Bending Angle Suggestion
Φ3 6 12 180 °> 180 °>
Φ4 7 16
Φ5 9 20
Φ6 9 24
Φ8 16 32
Φ10 18 40
Φ12 20 48

Width Table of Flatted Heat Pipe

Diameter Thickness Tolerance Wide Tolerance Diameter Thickness Tolerance Wide Tolerance
Φ3 2.5 ±0.05 3.32 ±0.15
Φ6
3.5 ±0.05 7.6 ±0.15
2 3.65 3 7.84
Φ4 3.6 ±0.05 4.3 ±0.15 2.9 7.91
3 4.68 2.5 8.13
2.5 4.95 2 8.54
2.3 5.08 1.5 8.86
2.2 5.14 1.2 8.98
2 5.24 1 9.05
Φ5 4 ±0.05 5.75 ±0.15 Φ8 5 ±0.05 9.96  
3.5 6.03 4.7 10.16
3 6.29 4.5 10.2
2.5 6.54 4.2 10.45
2.3 6.66 4 10.5
2 6.8 3.8 10.58
Φ6 5.3 ±0.05 6.62 ±0.15 3.5 10.71
5 6.82 3.2 10.9
4.8 6.92 3 10.97
4.5 7.08 Φ10 和Φ9.5 定制
4.3 7.2 Φ12
4.2 7.24 Φ12.7
4 7.34 Φ16
3.8 7.46 Φ22

Q-max Test Method For Heat Pipe

Test Method :
1. THeat Source=70±5℃
2. TCondencer  =50℃
3. DB=50mm
4. DA=50mm
5. TambieNIT  =25±3℃
6. Find the Q-max while T1-T2≤5℃

Q-MAX  

Thermal Performance Test

Data Obtained

Q-max Table (Watt)
Flatten Thickness Ф5mm Ф6mm Ф8mm
Min. Power Avg. Power Min. Power Avg. Power Min. Power Avg. Power
T=2.5mm 35 36 38 40 40 45
T=3.0mm 35 38 40 43 52 55
T=3.5mm 40 41 42 45 57 60
Round Pipe 45 48 48 50 60 67

Note: The data comes from the experimental results in 2008

Thermal Performance Test

type:straight pipe    Heat Pipe by L=200mm

Data Obtained

Q-max Table (Watt)
Flatten Thickness Ф5mm Ф6mm Ф8mm
  Min. Power   Avg. Power   Min. Power   Avg. Power   Min. Power   Avg. Power
T=2.5mm 28 30 30 32 35 40
T=3.0mm 30 32 33 35 40 45
T=3.5mm 33 34 35 40 55 58
Round Pipe 35 40 40 45 58 64

Note: The data comes from the experimental results in 2008

Thermal Performance Test 

 type: L pipe    Evaporator=50mm

Note: The data comes from the experimental results in 2008

Data Obtained

Q-max Table (Watt)
Specification Ф6×150 Ф6×180 Ф6×200
Bending radius R=18mm R=12mm R=18mm R=12mm R=18mm R=12mm
Flatten Thickness Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.
T=3.0mm 40 42 33 35 32 35 32 35 28 30 28 30
T=4.0mm 43 45 38 40 35 40 33 35 32 35 30 32
Round Pipe 52 55 45 48 48 50 43 45 40 43 38 40

 Thermal Performance Test

type:L pipe     Evaporator=40mm

Data Obtained

Q-max Table (Watt)
Specification Ф6×150 Ф6×180 Ф6×200
Bending radius R=18mm R=12mm R=18mm R=12mm R=18mm R=12mm
Flatten Thickness Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.
T=3.0mm 32 33 29 30 29 30 27 28 25 27 23 25
T=4.0mm 33 35 30 32 30 32 29 30 28 30 26 28
Round Pipe 43 45 38 40 40 41 38 40 38 40 36 38

 Thermal Performance Test

 type:U pipe      Evaporator=50mm

Data Obtained

Specification Ф6×150 Ф6×180 Ф6×200
Bending radius R=18mm R=15mm R=18mm R=15mm R=18mm R=15mm
Flatten Thickness Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.
T=3.0mm 30 32 23 25 30 32 28 30 26 27 23 25
T=4.0mm 33 35 29 30 33 35 30 33 28 30 27 28
Round Pipe 42 45 37 38 40 43 38 40 38 40 35 37

Thermal Performance Test

 typeU pipe       Evaporator=40mm

Data Obtained

Specification Ф6×150 Ф6×180 Ф6×200
Bending radius  R=18mm R=15mm R=18mm R=15mm R=18mm R=15mm
Flatten Thickness Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.
T=3.0mm 27 28 25 26 23 25 20 23 21 23 20 22
T=4.0mm 30 32 28 30 29 30 26 28 27 28 24 26
Round Pipe 36 38 35 36 34 35 31 33 30 32 28 30

Relationship between power and lengthSintered Heat Pipe

Relationship between power and lengthGrooved Heat Pipe

Relationship between power and thickness of heat pipe

Manufacturing Process of Heat Pipe

Heat Pipe Reliability Test

1.Testing diameter and △T
2.Heating at 150℃ for one hour
3.Testing diameter and  △T again
4.Heating at 150℃ for twelve hour again
5.Testing diameter and  △T again

Objective:

The purpose of this examination is to test the heat pipe stability which depends on how long the heat would change the shape and performance of the heat pipe in high temperature.

Isothermal test of heat pipe

1. Theat source =70℃±5℃
2. Heating Time    T≤15s
3. Check the temperature in upper edge of heat pipe T1
4. Check △T ,△T ≤4℃ , (△T =T-T1)。

Isothermal test of heat pipe

1.Theat source =70℃±5℃
2. Heating Time    T≤15s
3. Check the temperature in upper edge of heat pipe T1
4. Check △T ,△T ≤4℃ , (△T =T-T1)。

Objective:

The purpose of this examination is to see the stability of heat pipe, ensuring there are no defective goods after testing.

Thermal Cycle Test of Heat Pipe

Objective:

From testing ,the useful life and aging rate is revealed.

Our Heat Pipes

Operation Temperature 5~222℃
Burst Temperature(℃) 340℃(备注:增大壁厚可以提高破坏温度)
Useful Life@80℃operation temperature   >7年 Years

Heat Pipe Reliability Experiments

1. Useful life Test
2. Leakage Test
3. Performance Test
4.Thermal Cycle Test
5. Salt Spray Test